Atomic resolution phase contrast imaging and in-line electron holography using variable voltage and dose rate Brief title: Low dose rate/voltage HRTEM

نویسندگان

  • Bastian Barton
  • Bin Jiang
  • ChengYu Song
  • Petra Specht
  • Hector Calderon
  • Christian Kisielowski
چکیده

The TEAM 0.5 electron microscope is employed to demonstrate atomic resolution phase contrast imaging and focal series reconstruction with acceleration voltages between 20 and 300 kV and a variable dose rate. A monochromator with an energy spread of ≤0.1eV is used for dose variation by a factor of 1,000 and to provide a beam-limiting aperture. The sub-Ångstrøm performance of the instrument remains uncompromised. Using samples obtained from silicon wafers by chemical etching, the [200] atom dumbbell distance of 1.36 Å can be resolved in single images and reconstructed exit wave functions at 300, 80, and 50 kV. At 20 kV, atomic resolution < 2 Å is readily available but limited by residual lens aberrations at large scattering angles. Exit wave functions reconstructed from images recorded under low dose rate conditions show sharper atom peaks as compared to high dose rate. The observed dose rate dependence of the signal is explained by a reduction of beam-induced atom displacements. If a combined sample and instrument instability is considered, the experimental image contrast can be matched quantitatively to simulations. The described development allows for atomic resolution TEM of interfaces between soft and hard materials over a wide range of voltages and electron doses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting structural variances of Co3O4 catalysts by controlling beam-induced sample alterations in the vacuum of a transmission electron microscope

This article summarizes core aspects of beam-sample interactions in research that aims at exploiting the ability to detect single atoms at atomic resolution by mid-voltage transmission electron microscopy. Investigating the atomic structure of catalytic Co3O4 nanocrystals underscores how indispensable it is to rigorously control electron dose rates and total doses to understand native material ...

متن کامل

Choice of operating voltage for a transmission electron microscope.

An accelerating voltage of 100-300kV remains a good choice for the majority of TEM or STEM specimens, avoiding the expense of high-voltage microscopy but providing the possibility of atomic resolution even in the absence of lens-aberration correction. For specimens thicker than a few tens of nm, the image intensity and scattering contrast are likely to be higher than at lower voltage, as is the...

متن کامل

Dark-field electron holography for strain and composition measurement with a sub-nanometre spatial resolution

Transmission electron microscopy (TEM) is a well-established tool for strain measurement that combines an excellent precision with a high spatial resolution. Strain maps can be obtained by different TEM techniques such as high-resolution transmission electron microscopy (HRTEM), high-resolution scanning transmission electron microscopy (HR-STEM), convergent beam electron diffraction, nanobeam e...

متن کامل

Dose enhancement effect of gold nanoparticles on MAGICA polymer gel in mega voltage radiation therapy

Background: Radiation-sensitive polymer gels are among the most promising three-dimensional dose verification tools and tissue-like developed to date. Among the special features of this type of dosimeters, is be doped with other elements or chemicals which made them appropriate for investigating of dose enhancement with contrast agents, by high atomic number. Material and Methods: In this study...

متن کامل

Atomic Resolution Imaging of Halide Perovskites.

The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012